Local Computation of PageRank Contributions
نویسندگان
چکیده
منابع مشابه
Local Computation of PageRank Contributions
Motivated by the problem of detecting link-spam, we consider the following graph-theoretic primitive: Given a webgraph G, a vertex v in G, and a parameter δ ∈ (0, 1), compute the set of all vertices that contribute to v at least a δ fraction of v’s PageRank. We call this set the δ-contributing set of v. To this end, we define the contribution vector of v to be the vector whose entries measure t...
متن کاملEfficient Computation of PageRank
This paper discusses efficient techniques for computing PageRank, a ranking metric for hypertext documents. We show that PageRank can be computed for very large subgraphs of the web (up to hundreds of millions of nodes) on machines with limited main memory. Running-time measurements on various memory configurations are presented for PageRank computation over the 24-million-page Stanford WebBase...
متن کاملExperiments with PageRank Computation
PageRank algorithm is one of the most commonly used algorithms that determine the global importance of web pages. Due to the size of web graph which contains billions of nodes, computing a PageRank vector is very computational intensive and it may takes any time between months to hours depending on the efficiency of the algorithm. This promoted many researchers to propose techniques to enhance ...
متن کاملFast Distributed PageRank Computation
Over the last decade, PageRank has gained importance in a wide range of applications and domains, ever since it first proved to be effective in determining node importance in large graphs (and was a pioneering idea behind Google’s search engine). In distributed computing alone, PageRank vectors, or more generally random walk based quantities have been used for several different applications ran...
متن کاملEfficient Parallel Computation of PageRank
PageRank inherently is massively parallelizable and distributable, as a result of web’s strict host-based link locality. We show that the Gauß-Seidel iterative method can actually be applied in such a parallel ranking scenario in order to improve convergence. By introducing a two-dimensional web model and by adapting the PageRank to this environment, we present efficient methods to compute the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Internet Mathematics
سال: 2008
ISSN: 1542-7951,1944-9488
DOI: 10.1080/15427951.2008.10129302